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We theoretically explore the possibility of a superconducting proximity effect in single-walled metallic
carbon nanotubes due to the presence of a superconducting substrate. An unconventional double-gap situation
can arise in the two bands for nanotubes of large radius wherein the tunneling is �almost� symmetric in the two
sublattices. In such a case, a proximity effect can take place in the symmetric band below a critical experi-
mentally accessible Coulomb interaction strength in the nanotube. Furthermore, due to interactions in the
nanotube, the appearance of a BCS gap in this band stabilizes superconductivity in the other band at lower
temperatures. We also discuss the scenario of highly asymmetric tunneling and show that this case too supports
double-gap superconductivity.
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Graphene-based materials, due to their unique two-band
structure,1,2 have recently commanded an explosion of theo-
retical and experimental investigations in diverse issues such
as the Kondo effect and quantum Hall systems of high SU�4�
symmetry,3,4 weak localization of Dirac fermions,5 Luttinger
liquid effects,6–9 and Coulomb blockade8 in nanotubes. In
this Rapid Communication, we theoretically investigate the
possibility of a proximity-induced effect in single-walled
metallic �carbon� nanotubes �SWMNTs� due to the presence
of a superconducting substrate with s-wave pairing �see Fig.
1� and show that in this geometry the two-band structure of
the SWMNT allows for the appearance of two superconduct-
ing gaps. In the case of nearly symmetric tunneling in the
two sublattices, which may be realized for metallic nano-
tubes with quite large radius, we predict two gaps of different
origins—one due to the superconducting substrate and the
other due to electron-electron interactions inside the
SWMNT. For very asymmetric tunneling in the two sublat-
tices, the two gaps emerge due to the proximity of the sub-
strate and they become identical when only one sublattice is
sensitive to the substrate.

Superconductivity in nanotubes has presented several
puzzles. Experimental observations include a very strong
proximity effect in suspended SWMNTs,10 intrinsic super-

conductivity in ultrathin nanotubes embedded in zeolite
matrix,11 and BCS-type behavior in bundles.12 It has been
predicted that superconductivity in an isolated SWMNT
would be manifest only at experimentally inaccessible tem-
peratures and for screened Coulomb interactions.13 However,
phonon exchange might be responsible for some attractive
interactions in the SWMNT.14,15 Alternatively, theoretical
questions arise as to whether external factors can also stabi-
lize superconductivity in SWMNTs, and if so, as to the na-
ture of this superconducting behavior. In the case of a point
contact with a superconductor, the proximity effect necessar-
ily requires attractive interactions to be stabilized,16,17 which
then favors a single-gap scenario. Below, we consider the
case of bulk contact with a superconductor and Coulomb
interactions which are unscreened, i.e., phonon exchange is
not relevant. We show that the proximity effect is stabilized,
and a double superconducting gap feature appears as a ge-
neric unconventional phenomenon.

As our starting point, we focus on a long, metallic �N ,N�
armchair nanotube,18 which is known to be an ideal one-
dimensional conductor.8,9,19 As shown in Fig. 2, electronic
low-energy excitations of the tube consist of two linearly
dispersing bands �labeled by i=1,2 and associated pseu-
dospin Pauli matrices �� �. These bands are symmetric and

FIG. 1. �Color online� A metallic armchair SWMNT, comprising
an underlying graphene structure having sublattices A and B, depos-
ited on an s-wave paired BCS superconductor. The SWMNT is
coupled to the substrate via electron-tunneling.

FIG. 2. �Color online� Low-energy band structure of a SWMNT.
Fermi points are labeled by �=± and the sublattices A and B com-
bine to build two bands with right ��� and left ��� movers. Here, k
represents the momentum associated with the x direction and �N

corresponds to the Fermi energy.
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antisymmetric combinations of the two sublattices of the
nanotube shown in Fig. 1. In the effectively infinite system,
each band has an associated right and left mover �labeled by
r= + ,−, respectively, and pseudospin Pauli matrices ���. Each
of the modes also carries spin �labeled by �= ↑ ,↓ and Pauli
matrices �� �, thus constituting eight degrees of freedom. The
Hamiltonian governing these modes reads

H0 = ivF�
ir�

r� dx 	ir�
† �x	ir�; �1�

vF�8
105 m /s is the Fermi velocity of each of the modes
and 	ir�

† is the operator for creating an electron of band index
i, chirality r, and spin �. As shown in Fig. 1, the x axis points
along the tube direction.

Below, we investigate the effects of external influences
such as substrates on these low-lying SWMNT modes. As
the most relevant couplings are expected to be quadratic in
the fermion operators, we first consider their influence before
considering interaction effects in the SWMNT.

As a realistic situation, we explore the case of a nanotube
in bulk contact with a conventional BCS singlet-paired su-
perconducting substrate via electron tunneling. The simplest
such coupling is described by

Htun =� dx���
†�x,0��tAcA��x� + tBcB��x�� + H.c.	 , �2�

where an implicit sum on spin � is assumed. Electronic sub-
strate degrees of freedom are described by the creation op-
erator ��

†�x ,y�; for simplicity, in Eq. �2�, we have assumed a
quasi-two-dimensional substrate and the y direction is shown
in Fig. 1. The nanotube degrees of freedom on sublattices A
and B are related to the aforementioned low-lying modes via
cA/B�

�=+ = �±	2−�+	1+�� /
2 and cA/B�
�=− = �±	2+�+	1−�� /
2. The

matrix elements tA/B related to the electron tunneling
strengths into the two sublattices depend upon the overlap of
wave functions between the substrate and nanotube degrees
of freedom. Focusing on an armchair SWMNT allows us �in
principle� to neglect small inhomogeneities in the tunneling
amplitudes, i.e., tA and tB are assumed to be x independent.

An effective description of the nanotube under the influ-
ence of the substrate can be obtained by integrating out the
substrate degrees of freedom ���x ,y�. Such an integration is
straightforward given that the substrate can be described by
the standard BCS form.20 For singlet-paired superconductiv-
ity, which is the case of interest below, the main induced
couplings stem from Andreev reflections, resulting in the
Hamiltonian

Hind = −� dx �
indices

�hi	ir�
† i���

y �rw
x 	iw�

† + h3	ir�
† i���

y �ij
x 	 jr�

†

+ H.c.� . �3�

It should be noted that the Andreev term h3, which couples
the two bands, can only be relevant if the Fermi energy �N of
the SWMNT lies at the Dirac points; otherwise, this process
does not conserve momentum and therefore becomes irrel-
evant at long wavelengths. So we will ignore it, considering
the �general� case where �N does not lie at the Dirac points.21

The bare couplings h1/2 take the general form h1/2
=h0�1±sin 2�. For a quasi-two-dimensional substrate, the
coefficient h0 is proportional to �tA

2 + tB
2� and is inversely pro-

portional to 
�, where � is the superconducting gap of the
substrate. In general the angle  obeys 0�=tan−1�tB / tA�
�� /4.22 However →� /4 �symmetric tunneling� should
hold for large-radius armchair tubes �see Fig. 1�, substrates
whose underlying lattices show significant mismatch with
the nanotube lattice, and for specific orientations of the tube
in which the A and B sublattices are equidistant from the
substrate. The situation →0 corresponds to the extreme and
less physical case where tunneling involves only one sublat-
tice.

We argue that our procedure is well controlled in the
weak-coupling regime, i.e., assuming that the couplings hi
are smaller than the superconducting gap �, which then can
be used as the ultraviolet cutoff of the effective theory. It
should be noted that, since an electron in the SWMNT can
virtually leak into the substrate and then tunnel back into the
SWMNT, in principle, the electron propagator of a given
band also acquires a finite self-energy. For a superconducting
substrate, we have checked that this self-energy evolves
smoothly close to the quasiparticle pole. This effect is always
small compared to that of electron-electron interactions on
the electron self-energy23 and thus can be safely ignored.
Also, for the sake of simplicity, the superfluid phase of the
superconducting substrate is set to zero.

The above arguments indicate that, depending on the mi-
croscopic details of the tunneling coupling with the substrate,
the nanotube can develop two BCS-type gaps. In what fol-
lows we study the effect of Coulomb interactions on these
gaps along the lines of Refs. 6 and 13. We also show that
interactions have a dramatic effect when →� /4, when the
coupling with the superconducting substrate only gives rise
to a gap in the symmetric band. In this context interactions
reinforce interband Cooper processes consisting of pair hop-
ping from band 1 to band 2,24–26 resulting in a superconduct-
ing gap at lower temperatures in band 2 in spite of the van-
ishing value of h2. We wish to emphasize that this scenario is
still likely to happen for reasonably small deviations around
=� /4.

To begin with, forward scattering processes, in which
electrons stay in the same branch, produce a long-range in-
teraction which involves the total charge density,6

Hind = e2 ln�Rs/R� � dx �tot
2 �x� , �4�

where �tot=�ir�	ir�
† 	ir�, R being the tube radius and Rs the

screening length of Coulomb interactions. In general, Rs is
long compared to R but short compared to the length of the
tube. In the extensively used Luttinger liquid description27 of
the SWMNT,6,13 this term contributes to the Luttinger pa-
rameter g of the total charge “sector” as

g = �1 + �8e2/vF���ln�Rs/R��−1/2. �5�

In this description, we find the scaling dimension of the op-
erators h1,2 to be �h= �3+g−1� /4. We deduce that the Andreev
terms h1,2 are relevant when g exceeds the critical value gc
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=0.2, i.e., when �h�2, thereby opening BCS-type gaps be-
low the critical temperatures

Tc1,2 � ��h1,2

�
�4/�5−g−1�

� � . �6�

As mentioned above, the superconducting gap � in the BCS-
type substrate is the ultraviolet cutoff of our �effective�
theory, which justifies that Tc2�Tc1��. For free electrons,
i.e., g=1, we recover the critical temperatures Tc1,2h1,2.
Coulomb interactions in the tube tend to reduce the super-
conducting gaps �1,2Tc1,2 which are experimentally acces-
sible if g is not too close to 0.2, i.e., for a screening length Rs
which is smaller than 1000 Å.

Now, we investigate in depth the more unconventional,
physically accessible situation →� /4 or h2→0 below the
critical temperature Tc1. In this situation �2→0 and appar-
ently only band 1 is gapped. First, the superconducting gap
�1 in band 1 affects spectral properties such as the local
density of states available for an electron to tunnel into a
long tube at a given site on the tube from a metallic electrode
or a scanning tunneling microscopy tip. For example, in the
weak-tunneling regime, the �tunneling� current I should ex-
hibit a prominent peak at the bias voltage V= ±�1 /e reflect-
ing the profile of the BCS density of states.28 Whereas a BCS
gap develops in band 1, close to and below Tc1, the band 2
charge sector still obeys the Luttinger theory,

H�2�,�2�� =
vF

2�
� dx� 1

g2
2 ��x2��2 + ��x�2��2� , �7�

where �x2� represents the charge density associated with
band 2 and �2� embodies the conjugate superfluid phase. The
Luttinger parameter satisfies g2

−2= �g−2+1� /2.
Bands 1 and 2 are still coupled through Hint, and the most

relevant coupling is of the form

Hint
�1� =� dx v12

� �x1��x2�, �8�

where v12
� =vF�g−2−1� /2�. Given that the superfluid phase

�1� of band 1 is pinned below Tc1, thus inducing strong
fluctuations in the density operator �x1�, the coupling v12

�

renders the 2� correlation function with additional fluctua-
tions. This potentially enhances g2. The coupling v12

� is in
fact an analytic perturbation which has been thoroughly ana-
lyzed in a different context.25 To evaluate the increase of g2
below Tc1 we proceed as in Ref. 25, which gives g2

r �g2�1
−g2

4�v12
� �2�2 / �2vF

2��−1,29 and g2
r �2g2�2
2g assuming that

g�1. The tunneling current at low bias voltage emerging
from the gapless band 2 thus obeys the form dI /dVV�,
where �= �g2

r +1 /g2
r −2� /4. The exponent � is distinguishable

from the exponent �g+g−1−2� /8 which occurs in the ab-
sence of the substrate, i.e., above Tc1.6

The results above hold for a range of temperatures below
Tc1. However, as shown below, at still lower temperatures,
several short-range interactions become important, in par-
ticular backward scattering mechanisms and other forward
scattering processes measuring the difference between intra-
and intersublattice interactions. In the absence of a supercon-

ducting substrate, these momentum-conserving scattering
vertices are “marginal” and become important only at an
exponentially small �unreachable� energy scale.13 However,
in the presence of the substrate, below Tc1, these terms gain
relevance as a result of the off-diagonal long-range order in
band 1, i.e.,

P1 = �	1+↑
† 	1−↓

† + 	1−↑
† 	1+↓

† � � 0, �9�

where we estimate P1Tc1 /�vF. In analogy with the two-
chain Hubbard model,24,25 we thus anticipate that interband
Cooper-type processes will be reinforced below Tc1. We note
that Eq. �3� implies P1�0, consistent with the superfluid
phase of band 1 coinciding with that of the superconducting
substrate below Tc1.

From Ref. 13, we identify two relevant forward �f� and
backward �b� scattering processes respecting P1�0,

Hint
�2� =� dx�

�

�− f	1+�
† 	1−�̄

† 	2−�	2+�̄ + b	1+�
† 	1−�̄

† 	2−�̄	2+�

+ H . c . � , �10�

with �̄=↓ if �=↑, and vice versa. Assuming the equality b
= f , this results in the following �exact� Hamiltonian:

Hint
�2� =� dx fP1�	2−↓	2+↑ + 	2+↓	2−↑ + H . c . � , �11�

which characterizes pair hopping mechanisms from one band
to the other. Using the notations of Ref. 13, we get fP1
��5.4�Tc1 /
3N where � is a constant of the order of 0.1
and N is the circumference of the tube in units of graphene
periodicity. The factor 1 /N appears because these terms stem
from short-ranged contributions and the probability for two
electrons to be near each other is of order 1 /N. A small
deviation from b= f does not affect the result because, below
Tc1, one obtains �	1+↑

† 	1−↓
† −	1−↑

† 	1+↓
† �=0 �as a result of P1

�0�. The Cooper pair �Higgs� field associated with band 1
thus induces a superconducting gap in band 2, and the asso-
ciated critical temperature Tc3 is defined by

Tc3 � Tc1� fP1

Tc1
�2/�3−1/g2

r �

� Tc1. �12�

For →� /4, the emergent superconducting gap in band
2, �3Tc3, is also accessible experimentally; for a �10,10�
armchair nanotube we find fP1 /Tc10.1. Hint

�2� implies that
the superconducting order parameters of the two bands ex-
hibit a relative negative sign which is consistent with repul-
sive interactions �f �0� and two-band Hubbard
ladders.24,25,27

Thus, the band structure of the SWMNT offers two pos-
sible mechanisms for a double-gap superconducting proxim-
ity effect. For the extreme asymmetric tunneling case →0,
the two bands equally couple to the substrate and each ex-
hibits a proximity-induced gap. For completely symmetric
tunneling →� /4, even though only the symmetric band
becomes affected by the substrate, interactions in the
SWMNT still open a superconducting gap in the antisym-
metric band. We conjecture that the exotic double-gap sce-
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nario occurring at →� /4 can be realized for armchair
nanotubes of large radius and substrates whose underlying
lattices show significant mismatch with the nanotube lattice.
This situation is likely to happen as long as Tc3�Tc2. The
two proximity effects associated with band 2 “compete,” i.e.,
they give a different sign to the superconducting order pa-
rameter of band 2 and thus result in a quantum phase transi-
tion occurring at the value of  for which Tc2=Tc3; at this
special point the band 2 remains gapless until zero tempera-
ture. For temperatures smaller than Tc2 �Tc3�, the tunneling
current exhibits a complete gap at low bias voltages and a
second peak at V= ±�2 /e �V= ±�3 /e�.

In conclusion, superconducting substrates stabilize super-
conductivity in SWMNTs and allow for the existence of a
double superconducting gap. A double-proximity effect in

nanotubes is yet to be ascertained by experiment. Sugges-
tively, several gaps have been observed in few-layer
graphene coupled to superconducting leads.30 Extensions of
this work include study of the proximity effect between
graphene and a �superconducting� substrate, and of possible
asymmetry in the coupling with the substrate for graphene-
based materials.31
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